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1 Spectral Theorem for Normal Operators

1.1 Spectral theorem for normal operators

Let T be a self-adjoint, bounded operator on a Hilbert space H. We have shown that

T =

∫
[a,b]

λ dE(λ),

in the sense that

〈Tx, y〉 =

∫
[a,b]

λ d〈E(λ), x, y〉,

where d 〈E(λ), x, y〉 is the Lebesgue-Stieltjes measure given by the map λ 7→ 〈E(λ), x, y〉.
We can extend our functional calculus to Borel-measurable functions by defining f(T )

to satisfy

〈f(T )x, y〉 =

∫
[a,b]

f(λ) d〈E(λ), x, y〉.

So we can construct a spectral measure E : B([a, b])→ Proj(H) such that

• E(∅) = 0, E([a, b]) = I,

• If An are disjoint, E(
⋃∞
n=1An)x =

∑∞
n=1E(An)x for all x (this is a weak operator

convergent sum).

• E(A ∩B) = E(A)E(B) for all A,B ∈ B([a, b]).

Diagonalization of an operator looks like

T =
∑

λ∈σp(T )

λPλ.

In the self-adjoint case, all λs must be real. In the case of normal operators, λ may be
complex.
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Theorem 1.1 (Spectral theorem for bounded normal operators). Let H be a Hilbert space
over C, and let N ∈ B(H) be normal. Then there is a compact D ⊆ C and a spectral
measure E : B(D)→ Proj(H) such that

N =

∫
D
z dE(z).

In other words,

〈Nx, y〉 =

∫
z d〈E(z)x, y〉,

where U 7→ 〈E(U)x, y〉 is a complex-valued measure for each x, y ∈ H.

Given N , we can write S + iT , where S, T are both self-adjoint and commute.

Lemma 1.1. In the spectral representation of T , every E(λ) commutes with every operator
that commutes with T .

Proof. If p ∈ R[t]) and S commutes with T , then S commutes with p(T ). Commutativity

survives for f(T ) with f ∈ C([a, b]) by convergence in operator norm. Finally, if Tn
WO−−→ T

and STn = TnS for all n, then

〈STx, y〉 = 〈Tx, S∗y〉 = lim
n
〈Tnx, S∗y〉 = 〈TSx, y〉 ,

for all x, y ∈ H, so ST = TS.

Corollary 1.1. ES(µ)ET (λ) = ET (λ)ES(µ) for all λ, µ.

Proof. Apply the lemma twice.

Now, given (p, q] + i(r, s] ⊆ C, define

E((p, q] + i(r, s]) := ES((p, q]) + iET ((r, s])

= (ES(q)− ES(p)) + i(ET (s)− ET (r)).

Warning: We may have
〈
ES((p, q])ET ((r, s])x, u

〉
6=
〈
ES((p, q])x, y

〉 〈
ET ((r, s]x, y

〉
.

Let aS = inf 〈Sx, x〉 and bS = sup 〈Sx, x〉, and define aT and bT similarly. We can now
define

N ′ =

∫
D
z dE(z), D = [aS , bS ] + i[aT , bT ].

We want to check that N ′ = N . Using the spectral theorem for self-adjoint operators,

N ′ =

∫
D
x dE(z) + i

∫
D
y dE(z) = S + iT = N.

The middle step is by a “Fubini”-type argument.
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1.2 Approximate eigenvalues

In the compact case, we had T =
∑∞

i=1 λiPλi , where the λi were the eigenvalues of T .

Definition 1.1. Let X be a normed space. λ ∈ C is an approximate eigenvalue for
T ∈ B(X) if

inf{‖(T − λ)x‖ : ‖x‖ = 1} = 0.

For compact operators, we saw that these were actually eigenvalues of the operator. In
general, this isn’t true. Here is an example:

Proposition 1.1. Let H = L2([0, 1]), and let Tf(x) = xf(x). Then λ is an approximate
eigenvalue if and only if λ ∈ [0, 1].

Proof. Let 0 ≤ λ ≤ 1, so (T − λ)f(x) = (x − λ)f(x). For any ε > 0, pick f ∈ L2([0, 1])
with ‖f‖ = 1 such that f(x) = 0 if x /∈ (λ− ε, λ+ ε). Then ‖Tf‖ ≤ ε‖f‖.

How does this play into our spectral representation, T =
∫
[a,b] λ dE(λ)?

Definition 1.2. The support of E is {λ : E(λ+ ε) 6= E(λ− ε) ∀ε > 0}.

Proposition 1.2. The support of E is the set of approximate eigenvalues for T .

Proof. (⊇): Suppose that E(c) = E(d) for some a ≤ c < d ≤ b, and let c < µ < d; we will
show that µ is not an approximate eigenvalue. Then

T =

∫
[a,b]

λ dE(λ) =

∫
[a,c]

λ dE(λ) +

∫
[d,b]

λ dE(λ),

so we get

T − µ =

∫
[a,b]

λ dE(λ) =

∫
[a,c]

(λ− µ) dE(λ)︸ ︷︷ ︸
T1

+

∫
[d,b]

(λ− µ) dE(λ)︸ ︷︷ ︸
T2

.

Both T1 and T2 are reduced by I = E(x) + E(d, b]. If we write x = x1 + x2, then

‖T1x1‖ ≥ |c− µ|‖x1‖, ‖T2x2‖ ≥ |d− µ|‖x2‖,

so we cannot make these arbitrarily small.
(⊇): If µ ∈ spt(E), let ε > 0. Then E(µ− ε, µ+ ε] 6= 0. Pick x with ‖x‖ = 1 such that

E(µ− ε, µ+ ε]x = x. Then

〈(T − µ)x, y〉 =

∫
[a,b]

(λ− µ) dE(λ)x =

∫
[µ−ε,µ+ε

(λ− µ) d〈E(λ)x, y〉 ≤ ε‖x‖‖y‖.

This will give us a better idea of what the set D is. It will be a set of eigenvalues.
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1.3 Banach algebras

Definition 1.3. An algebra over F is a vector space A over R togetehr with a multipli-
cation A × A → A : (a, b) 7→ ab which is associative and distributive with addition. An
algebra has an identity if there is some e ∈ A such that ea = ae = a for all a ∈ A.

Definition 1.4. A Banach algebra is a Banach space A which is also an algebra such
that

‖ab‖ ≤ ‖a‖‖b‖, ∀a, b ∈ A.

Example 1.1. Let X be compact and Hausdorff. Then C(X) is a Banach algebra. If X
is locally compact, C0(X) is a Banach algebra.

Example 1.2. L∞(µ) is a Banach algebra.

These are all commutative. Here are some noncommutative examples.

Example 1.3. B(X) is a Banach algebra if X is a Banach space.

Example 1.4. The collection of compact operators, B(X), is a Banach algebra (when X
is a Banach space).
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