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1 Spectral Theorem for Normal Operators

1.1 Spectral theorem for normal operators

Let T be a self-adjoint, bounded operator on a Hilbert space H. We have shown that
T = / NAE(V),
[a,b]

in the sense that

(Tz,y) = /[ B, 2.),

where d (E()\), z,y) is the Lebesgue-Stieltjes measure given by the map A — (E()\), z,y).
We can extend our functional calculus to Borel-measurable functions by defining f(7')
to satisfy

(f(M)z,y) = - ) dER), 2, y).

So we can construct a spectral measure E : B([a,b]) — Proj(H) such that
* E(2) =0, E([a,b]) = I,

o If A, are disjoint, E({Jy-, Ap)z = > 7 E(Ay)x for all z (this is a weak operator
convergent sum).

e E(ANB)=E(A)E(B) for all A, B € B([a,]).
Diagonalization of an operator looks like
T = Z AP,.
Xeop(T)

In the self-adjoint case, all As must be real. In the case of normal operators, A may be
complex.



Theorem 1.1 (Spectral theorem for bounded normal operators). Let H be a Hilbert space
over C, and let N € B(H) be normal. Then there is a compact D C C and a spectral
measure E : B(D) — Proj(H) such that

N = / 2 dE(2).
D
In other words,
Ve, = [ 2dBE.),
where U — (E(U)z,y) is a complex-valued measure for each x,y € H.
Given N, we can write S + i1, where S, T are both self-adjoint and commute.

Lemma 1.1. In the spectral representation of T', every E(\) commutes with every operator
that commutes with T .

Proof. If p € R[t]) and S commutes with 7', then S commutes with p(7"). Commutativity

survives for f(T') with f € C([a,b]) by convergence in operator norm. Finally, if 7}, Wo, 7
and ST,, = T,5S for all n, then

(STx,y) = (Tx,S™y) = li7ILn (Thx,S*y) = (IT'Sx,y),
forall z,y € H,s0 ST =1TS. O
Corollary 1.1. ES(u)ET(A) = ET(NE®(p) for all \, pu.
Proof. Apply the lemma twice. O
Now, given (p, q] +i(r, s] C C, define

E((p,q) +i(r, s]) :== E5((p, q)) +iE" ((r, 5])
= (E%(q) — E®(p)) +i(E" (s) — ET(r)).
Warning: We may have <ES((p, q])ET((T, s])x,u> % <ES((p, q])m,y> <ET((T, s]x,y>.

Let ¢ = inf (Sz,z) and b° = sup (Sz,z), and define a” and b” similarly. We can now
define

N = / zdE(z), D =[a"b°] +i[aT,bT].
D
We want to check that N = N. Using the spectral theorem for self-adjoint operators,
N = / xdE(z) —1—2'/ ydE(z) =S+l = N.
D D

The middle step is by a “Fubini”-type argument.



1.2 Approximate eigenvalues
In the compact case, we had T'= Y2, A\; Py,, where the \; were the eigenvalues of T'.

Definition 1.1. Let X be a normed space. A € C is an approximate eigenvalue for
T € B(X) if
inf{]|(7 = Nall : [l2l] = 1} = 0.

For compact operators, we saw that these were actually eigenvalues of the operator. In
general, this isn’t true. Here is an example:

Proposition 1.1. Let H = L*([0,1]), and let Tf(x) = zf(x). Then X is an approzimate
eigenvalue if and only if A € [0, 1].

Proof. Let 0 < A < 1,50 (T — A)f(x) = (x — \)f(z). For any ¢ > 0, pick f € L%([0,1])
with ||f]| = 1 such that f(z) =0if 2 ¢ (A —e,A+¢€). Then |Tf|| < el f]. O

How does this play into our spectral representation, T' = f[a?b] AAE(N)?
Definition 1.2. The support of E is {\: E(A +¢) # E(\A — ¢) Ve > 0}.
Proposition 1.2. The support of E is the set of approrimate eigenvalues for T .
Proof. (2): Suppose that E(c) = E(d) for some a < ¢ < d <b, and let ¢ < p < d; we will

show that p is not an approximate eigenvalue. Then

T:/ AAE()N) :/ )\dE(/\)—i—/ AAE(N),
[a,b] [a7c] [d,b]
so we get

T—p= /[a,b] AdE(N) = /M(A — w) dE(N) +/ (A—p)dE()) .

[d,b]

-~

70 T3
Both T} and T5 are reduced by I = E(x) + E(d,b]. If we write x = x; + x2, then
[Tyl = e = plllzdll, (| T2w2ll > [d = plllal],

so we cannot make these arbitrarily small.
(D): If € spt(E), let € > 0. Then E(u— e, u+ €] # 0. Pick = with ||z|| = 1 such that
E(p—e,p+e¢lz = x. Then

(=)= [

(A — ) dE(\)z = / A= W) dENz,y) < ellzllyll. O
[a,b]

[u—e,ute

This will give us a better idea of what the set D is. It will be a set of eigenvalues.



1.3 Banach algebras

Definition 1.3. An algebra over F is a vector space A over R togetehr with a multipli-
cation A x A — A : (a,b) — ab which is associative and distributive with addition. An
algebra has an identity if there is some e € A such that ea = ae = a for all a € A.

Definition 1.4. A Banach algebra is a Banach space A which is also an algebra such
that
labl| < l[alllbll,  Va,be A.

Example 1.1. Let X be compact and Hausdorff. Then C(X) is a Banach algebra. If X
is locally compact, Cy(X) is a Banach algebra.

Example 1.2. L*>(u) is a Banach algebra.
These are all commutative. Here are some noncommutative examples.
Example 1.3. B(X) is a Banach algebra if X is a Banach space.

Example 1.4. The collection of compact operators, B(X), is a Banach algebra (when X
is a Banach space).



	Spectral Theorem for Normal Operators
	Spectral theorem for normal operators
	Approximate eigenvalues
	Banach algebras


